Error estimates for obstacle problems of higher order
نویسندگان
چکیده
منابع مشابه
Error estimates for obstacle problems of higher order
For obstacle problems of higher order involving power growth functionals we prove a posteriori error estimates using methods from duality theory. These estimates can be seen as a reliable measure for the deviation of an approximation from the exact solution being independent of the concrete numerical scheme under consideration.
متن کاملHierarchical error estimates for the energy functional in obstacle problems
We present a hierarchical a posteriori error analysis for the minimum value of the energy functional in symmetric obstacle problems. The main result is that the energy of the exact solution is, up to oscillation terms, equivalent to an appropriate hierarchical estimator. The proof does not invoke any saturation assumption. Moreover, we prove an a posteriori error estimate indicating that the es...
متن کاملResidual type a posteriori error estimates for elliptic obstacle problems
under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we give an a posteriori error estimates with constitutive law for some obstacle problem. The error estimator involves some parameter ε appeared in some penalized equation.
متن کاملOn Mixed Error Estimates for Elliptic Obstacle Problems
In this paper, we establish sharp error estimates of residual type for nite element approximation to elliptic obstacle problems. The estimates are of mixed nature, which are neither of a pure a priori form nor of a pure a posteriori form but instead they are combined by an a priori part and an a posteriori part. The key ingredient in our derivation for the mixed error estimates is the use of a ...
متن کاملError estimates for higher-order finite volume schemes for convection-diffusion problems
It is still an open problem to prove a priori error estimates for finite volume schemes of higher order MUSCL type, including limiters, on unstructured meshes, which show some improvement compared to first order schemes. In this paper we use these higher order schemes for the discretization of convection dominated elliptic problems in a convex bounded domain Ω in IR2 and we can prove such kind ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Sciences
سال: 2008
ISSN: 1072-3374,1573-8795
DOI: 10.1007/s10958-008-9097-0